Multiscale modeling of sea clutter

Jianbo Gao

PMB Intelligence LLC, West Lafayette, IN 47906 jbgao@pmbintelligence.com, gao@ece.ufl.edu

Wen-wen Tung

Department of Earth and Atmospheric Sciences Purdue University, West Lafayette, IN 47907 wwtung@purdue.edu

Jing Hu

PMB Intelligence LLC & Affymetrix, Santa Clara, CA jhu@pmbintelligence.com

Outline

- Background and challenges
- Fitting nonstationary sea clutter data
- Target detection by fully characterizing the correlation structure of sea clutter
- Target detection by cascade multifractal modeling of sea clutter
- Conclusions

Sea clutter

Backscattered returns from a patch of the sea surface illuminated by a transmitted radar pulse

Complexities: turbulent wave motions + multipath propagation

Source of sea clutter data

- 14 sea clutter measurements from Prof. Simon Haykin; each measurement contains 14 range bins, a few bins hit a small target
- Each measurement was made under certain weather and sea conditions (wave height varied from 0.8 m to 3.8 m; wind conditions varied from still to 60 km/hr)

h : Antenna height

φ : Grazing angle

R_i: Range (distance from the radar)

B₁ ~ B₁₄ : Range bins

Significance and Challenges of sea clutter modeling

- Sea clutter analysis is an important theoretical problem
- Target detection within sea clutter is important to coastal and national security, to navigation safety, and to environmental monitoring
- CouldSat: Sea clutter removal may help improve cloud system modeling
- Over a thousand papers have been published. Numerous methods and new concepts including chaos and fractal theory have been tried to model sea clutter
- By now, the nature of sea clutter is still not well understood
- Simple and effective models for sea clutter are highly desirable

Why sea clutter modeling is difficult? — Nonstationary!

- (i) Data viewed at different time and scales appear very different.
- (ii) Subplot (e): signals cannot be characterized as ideal random fractals or autoregressive (AR) processes.

Failure of direct distributional analysis of sea clutter

- (i) Distr. tried: Weibull, log-normal, K, compound Gaussian, log-Weibull
 - (ii) K disrt. $f(x) = \frac{\sqrt{2\nu}}{\sqrt{\mu}\Gamma(\nu)2^{\nu-1}} \left(\sqrt{\frac{2\nu}{\mu}}x\right)^{\nu} K_{\nu-1} \left(\sqrt{\frac{2\nu}{\mu}}x\right), \quad x \ge 0$ is among the best; but the fitting can be poor
- Can't help with target detection Culprit: data is nonstationary!

Our approach to fit nonstationary sea clutter data

- Denote the sea clutter amplitude data by $y(n), n = 1, 2, \cdots$
- Denote the differenced data of sea clutter by, $x(n) = y(n+1) y(n), n = 1, 2, \cdots$
- Fit $x(n), n = 1, 2, \cdots$ using **Tsallis distribution**.
- Why such a strategy works?
 - Consider white Gaussian noise, u(i), $i = 1, 2, \cdots$. It is **stationary**!
 - Standard Brownian motion (or random walk): $v(n) = \sum_{i=1}^{n} u(i)$ is **nonstationary**, because the variance of v(n) is proportional to (time) n
 - K-distr. can be derived by assuming a random walk model for scatterers!

Tsallis distribution

- Obtained by maximizing the Tsallis entropy under 2 constraints.
- The distr: when 1 < q < 3,

$$p(x) = \frac{1}{Z_q} [1 + \beta(q-1)x^2]^{1/(1-q)},$$

where Z_q is a normalization constant.

- When q = 1 & 2, it reduces to the normal & Cauchy distr.
- When 5/3 < q < 3, the distribution is heavy-tailed
- Significance: provides foundation for the heavy-tailed and α -stable distr.

Heavy-tailed distribution

- Pareto distr: $P[X \ge x] = \left(\frac{b}{x}\right)^{\alpha}$, $x \ge b > 0$, $\alpha > 0$ where α and b are the shape & the location parameters.
- In the discrete time case, we have Zipf distr.
- Heavy-tailed distr: $P[X \ge x] \sim x^{-\alpha}, x \to \infty$
- When α < 2, the variance and all higher than 2nd-order moments do not exist.
 - when $\alpha \leq 1$, the mean also diverges.
- Cauchy distr (also called Lorentzian distr) with PDF $f(x) = \frac{l}{\pi(l^2 + x^2)}$ is an example with $\alpha = 1$

Stable laws and Levy motions

- Paul Levy (teacher of Mandelbrot, the **Father** of fractal geometry) posed such a question: When will the distribution for the sum of the random variables and those being summed have the same functional form?
- Stable laws are the unique class of distributions that have such a property.
- Stable laws include Gaussian distr as a special case; in the non-Gaussian case, the distributions are heavy-tailed
- Levy motions: random walk processes whose increments are characterized by stable laws

The meaning of stable laws and Levy motions

- Normal distr & central limit theorem describe daily, mundane life
 Many lucky people live through such a life happily.
- Occasionally one has to take on an unplanned journey, during which many unexpected and exciting (or terrible) things happen.
- Such a journey could be related to hate, love, patriotism, and so on, as illustrated by numerous classic poems, fictions and movies.
- **Kolmogorov was pondering**: Stable laws with infinite variance should be observed more often than the normal distr. In reality ...?
- Abundant examples of heavy-tailed distributions have been found: Amount of Internet traffic, topology of networks (eg, power-law networks), distr. of the size of the power outages, ...
- Fundamental question: How do stable laws arise?

Deriving Tsallis distr by maximizing Tsallis entropy

- Tsallis entropy aims to characterize a type of motion whose complexity is neither regular nor fully chaotic/random, by employing a parameter q, that best describes the motion.
- It's defined by $H_q^T = \frac{1}{q-1} \left(1 \sum_{i=1}^m p_i^q \right)$.
- In the continuous case, it is $H_q^T = \frac{1}{q-1} \left(1 \int_{-\infty}^{\infty} d(\frac{x}{\sigma}) [\sigma p(x)]^q \right)$.
- It reduces to the Shannon entropy when $q \rightarrow 1$.
- Tsallis distr can be derived by maximizing Tsallis entropy under 2 constraints,
 - Total prob. is 1: $\int_{-\infty}^{\infty} p(x) dx = 1$.
 - Second normalized moment is known: $\int_{-\infty}^{\infty} [x^2 \sigma^2][p(x)]^q dx = 0$.

Generalized Tsallis distribution

• We may generalize the Tsallis distr by replacing the 2nd constraint by $\int_{-\infty}^{\infty} [x^{\alpha} - \sigma^{\alpha}][p(x)]^q dx = 0$. Then the distr becomes

$$p(x) = \frac{1}{Z_q} [1 + \beta(q - 1)x^{\alpha}]^{1/(1 - q)}$$

- This is our starting point for modeling sea clutter.
- To model turbulent motions, Christian Beck (2000) obtained the same distr. through a different approach, which is considerably more complicated than our approach.

Fitting sea clutter by Tsallis distribution

(Symbol: data; curve: Tsallis fit)

- Data is ready. So what is the challenge here?
- Data is highly nonstationary. It's not very meaningful to perform distributional analysis on original data.
- How about the differenced data? It works!
- Parameters are helpful for target detection.

Introduction to fractal & multifractal

- A part is (exactly or statistically) similar to another part, or to the whole.
- Clouds; mountains; trees; etc.
 (Images: not computer-made, but photos of Jiu Zhai Gou)
- Power-law relation
 a straight line in a log-log plot (scaling)
- Many (or possibly infinitely many) power-law relations
 - Multifractal.

Cantor set

The set consists of ∞ of isolated points. Its measure and topological dimension are both 0. Fractal dimension = $\ln 2 / \ln 3$.

Fractional Brownian motion (fBm) $B_H(t)$

- Gaussian process with mean 0 & stationary increments
- Variance:

$$E[(B_H(t))^2] = t^{2H}$$

Power spectral density

$$f^{-(2H+1)}$$

• *H*: Hurst parameter.

1/2 < H < 1: long memory (long-range-dependence (LRD))

H = 1/2: standard Brownian motion

0 < H < 1/2: anti-persistence

• Applications to a wide range of problems (including Hollywood movie making—fancy landscape)

Examples of fBm processes with different H

Random walks and their analysis

- Remove the mean values from $\{x(i)\}$ process, denote it as $\{u(i)\}$
- Random walk: $y(n) = \sum_{i=1}^{n} u(i)$
- Independent u(i)'s (a drunk)—no correlation:

$$E[y(m)^2] = m \cdot E[u(i)^2] \sim m$$

• Fluctuation analysis (FA):

$$F^{(2)}(m) = \langle |y(n+m) - y(n)|^2 \rangle \sim m^{\zeta(2)}$$

Hurst parameter $H = H(2) = \zeta(2)/2$

- -H = 1/2: no or short-range correlation
- -0 < H < 1/2: anti-persistent long range correlation
- -1/2 < H < 1: persistent long range correlation

The meaning of the Hurst parameter

- Increment process $\{x_1, x_2, \dots, x_n\}$: power spectral density (PSD) $f^{-(2H-1)}$; autocorrelation function: $r(k) \sim k^{2H-2}$, as $k \to \infty$
- Random walk process $\{y_n\}$, $y_n = \sum_{i=1}^n x_i$, PSD: $f^{-(2H+1)}$
- Averaging the original series *X* over non-overlapping blocks of size m to obtain:

$$X_t^{(m)} = (X_{tm-m+1} + \dots + X_{tm})/m, \ t \ge 1, \quad var(X^{(m)}) = \sigma^2 m^{2H-2}$$

where σ^2 is the variance of $\{x_1, x_2, \dots, x_n\}$

• The value of *H* determines effectiveness of smoothing:

$$-H = 0.50, m = 100, var(X^{(m)}) = \sigma^2/100$$

$$-H = 0.75, m = 10^4, var(X^{(m)}) = \sigma^2/100$$

$$-H = 0.25, m \approx 21.5, var(X^{(m)}) = \sigma^2/100$$

Structure-function-based multifractal analysis

- $F^{(q)}(m) = \langle |y(i+m) y(i)|^q \rangle \sim m^{\zeta(q)}$? q < 0: emphasizes small absolute increments of y(i); q > 0: emphasizes large absolute increments of y(i)
- $H(q) = \zeta(q)/q$
- Monofractal: $\zeta(q)$ linear in q ($\zeta(0) = 0$); H(q) constant

Multifractal: $\zeta(q)$ nonlinear in q; H(q) varies with q

- Can extend to detrended multifractal and wavelet-based multifractal analysis
 - When analyzing real data, these are preferred! (Gao et al., *Phys. Rev. E* 2006)

Target detection within sea clutter

- H(2) is much larger when the range bins hit a target
- ullet Sea clutter data are multifractals, and that other q values can also robustly detect targets within sea clutter

Accuracy of target detection across measurements

- Hypothesis H_0 : sea clutter without target, $H(2) < \gamma$ Hypothesis H_1 : sea clutter with target, $H(2) > \gamma$
- $\gamma \approx 0.185$ yields a perfect classification for all datasets

Modeling multifractals: Cantor set with multifractal measure

Cascade multifractals: construction rule

Stage Time scale €=2⁰ 0 ∈=2⁻¹ $1-r_{1,1}$ r_{1,1} $r_{1,1}r_{2,1}$ $r_{1,1}(1-r_{2,1})$ $(1-r_{1,1})r_{2,3}$ $(1-r_{1,1})(1-r_{2,3})$ $\in=2^{-2}$ ∈=2⁻³ $r_{1,1}r_{2,1}r_{3,1}$ $r_{1,1}r_{2,1}(1-r_{3,1})$

All $r_{l,m}$, $1 - r_{l,m}$ are governed by same pdf P(r).

Multifractal scalings for cascade models

- The weights at the stage N, $\{w_n, n = 1, ..., 2^N\}$, can be expressed as $w_n = u_1 u_2 \cdots u_N$, where u_l , l = 1, ..., N, are either r_{ij} or $1 r_{ij}$.
- Thus, $\{u_i, i \ge 1\}$ are independent identically distributed (iid) random variables (RV's) having pdf P(r).
- Since $\ln w_n$ is the sum of iid RV's $\ln u_i$, i = 1,...,N, one readily sees that $\ln w_n$ follows a normal distribution, and thus w_n follows a log-normal distribution
- Multifractal scaling for the cascade model

$$M_q(\varepsilon) = \sum_i w_i^q \sim \varepsilon^{\tau(q)}, \quad D_q = \tau(q)/(q-1)$$

• We can also prove that

$$\tau(q) = qH(q) - 1$$

Stage-dependent multiplicative process model

•

Variance of $P^{(i,i+1)}(r)$ varies from one stage to the next in a simple manner: $\sigma^2_{(i,i+1)} = a \cdot \sigma^2_{(i-1,i)}, \quad a > 1$

Sea clutter amplitude and envelope data

Envelope is formed by picking up successive local maxima

Multifractal features of sea clutter (Gao & Yao)

Original signal: scaling breaks for negative q and small time scale; indicating the smooth waveform between successive maxima does not follow the multifractal scaling law.

Log-normality of sea clutter envelope signals (Gao & Yao)

Original signal: slightly deviates from log-normal distribution — due to the smooth waveform part.

Envelope signal: excellent log-normal distribution.

Cascade multifractal modeling of sea clutter

• (a,b) Sea clutter amplitude data without and with target. (c,d) The corresponding simulated data.

Target detection by cascade multifractal modeling

Conclusions

- We have shown that sea clutter data are highly nonstationary and multiscaled
- We have developed new distributional analyses approaches to better describe sea clutter
- We have developed structure-function based highly accurate (close to 100%) multifractal methods for detecting low observable targets within sea clutter
- We have developed a cascade multifractal model for sea clutter, which can simultaneously account for the distributional as well as correlation structure of sea clutter
- For more details on the theory, see Gao et al
 Multiscale Analysis of Complex Time Series Integration of
 Chaos and Random Fractal Theory, and Beyond, Wiley, August,
 2007.

Some thoughts on reducing sea clutter from CoudSat data

- Extend the 1-D cascade multifractal model to 2-D and 3-D (after each partition, one square becomes 4 squares, and one cube becomes 8 cubes)
- Identify important spatial scales associated with wave and turbulence patterns on the sea surface; these scales are important elements in multifractal modeling
- Estimate the Hurst parameter (and the H(q) spectrum) from spatial sea clutter data; they may be of critical importance in designing the best spatial smoothing algorithms
- Non-Gaussian sea clutter distribution may also be exploited to improve spatial smoothing